Estimulación de la médula espinal: una nueva estrategia terapéutica para restaurar la función motora

Maria Florencia Álamos Grau, Rómulo Fuentes


La estimulación dela Médula Espinal(EME) es una técnica de neuromodulación que ha mostrado ser efectiva en el manejo de los trastornos motores propios de enfermedades tan devastadoras comola Enfermedadde Parkinson (EP) y las lesiones de la médula espinal. Considerando que ambas patologías cuentan con opciones terapéuticas limitadas,la EMEse podría posicionar como una técnica prometedora. Los mecanismos por los cuales operaría la estimulación difieren en ambos casos, generando cambios en la circuitería espinal local en el caso de las lesiones medulares, y cambios supraespinales, en el caso dela EP. Enesta revisión se busca analizar los efectos dela EMEen ambas enfermedades, tanto en modelos animales como en pacientes, hacer una breve descripción de los mecanismos y aludir a los desafíos futuros propuestos para ambos casos.

Palabras clave

Estimulación de la médula espinal; neuromodulación; función motora; enfermedad de Parkinson; lesión de la médula espinal; centros generadores de patrones; actividad neural.

Texto completo:



Agari T & Date I (2012). Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurologia Medico-Chirurgica, 52(7), 470-474.

Ahlskog J & Muenter M (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement Disorders, 16(3), 448-458.

Arii Y; Sawada Y; Kawamura K; Miyake S; Taichi Y; Izumi Y & Mitsui T(2014). Immediate effect of spinal magnetic stimulation on camptocormia in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 85(11), 1221-1226.

Beres-Jones, J & Harkema, S (2004). The human spinal cord interprets velocity-dependent afferent input during stepping. Brain, 127(10), 2232-2246.

Brown, J; Deriso D; & Tansey K (2012). From contemporary rehabilitation to restorative neurology. Clinical Neurology and Neurosurgery, 114(5), 471-474.

Brys I; Bobela W; Schneider B; Aebischer P & Fuentes, R. (2016). Spinal cord stimulation improves forelimb use in an alpha-synuclein animal model of Parkinson’s disease. International Journal of Neuroscience, 7454, 1-9.

Cameron T (2004). Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 100 254-267.

Capogrosso M; Milekovic T; Borton D; Wagner F; Martin Moraud E; Mignardot J & Courtine G (2016). A brain-spinal interface alleviating gait deficits after spinal cord injury in primates. Nature, In Press(7628), 284-288.

Capogrosso M; Wenger N; Raspopovic S; Musienko P; Beauparlant J; Bassi Luciani L & Micera, S (2013). A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. Journal of Neuroscience, 33(49), 19326-19340.

Carlsson A (2002). Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. Journal of Neural Transmission, 109(5-6), 777-787.

Courtine G; Gerasimenko Y; van den Brand R; Yew A; Musienko P; Zhong, H & Edgerton V(2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 12(10), 1333-1342.

Courtine G; Song B; Roy R; Zhong H; Herrmann J; Ao Y & Sofroniew M (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine, 14(1), 69-74.

Danner S; Hofstoetter U; Freundl B; Binder H; Mayr W; Rattay F & Minassian K (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain, 138(3), 577-588.

Deer T; Mekhail N; Provenzano D; Pope J; Krames E; Thomson S; North R (2014). The appropriate use of neurostimulation: Avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation, 17(6), 571-598.

Dimitrijevic M. R; Dimitrijevic M; Faganel J & Sherwood A (1984). Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann Neurol, 16(2), 216-221.

Dimitrijevic, M; Gerasimenko Y & Pinter M (1998). Evidence for a spinal central pattern generator in humans. In Annals of the New York Academy of Sciences 860 (360-376).

Dimitrijevic M; Kakulas B; McKay W & Vrbová G (2012). Restorative Neurology of Spinal Cord Injury. Restorative Neurology of Spinal Cord Injury.

Dimitrijevíc M & Nathan P (1967). Studies of spasticity in man. 2. Analysis of stretch reflexes in spasticity. Brain : A Journal of Neurology 90(2) 333-358. Retrieved from

EdgertonV; Courtine G; Gerasimenko Y; Lavrov I; Ichiyama R; Fong A; Roy R (2008). Training locomotor networks. Brain Research Reviews.

Eldabe S; Buchser E & Duarte R (2015). Complications of Spinal Cord Stimulation and Peripheral Nerve Stimulation Techniques: A Review of the Literature. Pain Medicine, pnv025.

Faganel J & Dimitrijevic M (1982). Study of propriospinal interneuron system in man. Cutaneous exteroceptive conditioning of stretch reflexes. Journal of the Neurological Sciences, 56(2–3), 155–172.

Fénelon G; Goujon C; Gurruchaga J; Cesaro P; Jarraya B; Palfi S & Lefaucheur J (2012). Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism & Related Disorders, 18(2), 213-4.

Follett K; Weaver F; Stern M; Hur K; Harris C; Luo, P & Group C. S. P. S. (2010). Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med, 362(22), 2077-2091.

Friedli L; Rosenzweig E; Barraud Q; Schubert M; Dominici N; Awai, L & Courtine G (2015). Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 7(302), 302ra134.

Fuentes R; Petersson P & Nicolelis M (2010). Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: Mechanistic approach. European Journal of Neuroscience, 32(7), 1100–1108.

Fuentes R; Petersson P; Siesser W; Caron M & Nicolelis M (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science, 323(5921) 1578-1582.

Goedert M; Spillantini M; Del Tredici K & Braak H (2012). 100 years of Lewy pathology. Nature Reviews Neurology, 9(1), 13–24.

Goetz C; Poewe W; Rascol O & Sampaio C (2005). Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord, 20(5), 523-539.

Grabli D; Karachi C; Welter M; Lau B; Hirsch E; Vidailhet M & Francois C (2012). Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry, 83(10), 979-985.

Grillner S (1981). Control of locomotion in bipeds, tetrapods, and fish. Handbook of Physiology, The Nervous System II, 1179-1236.

Grillner, S., Hellgren, J., Ménard, A., Saitoh, K., & Wikström, M. A. (2005). Mechanisms for selection of basic motor programs - Roles for the striatum and pallidum. Trends in Neurosciences, 28(7), 364-370.

Grillner S (2006). Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion. Neuron.

Gurfinkel V; Levik Y; Kazennikov O & Selionov V (1998). Locomotor-like movements evoked by leg muscle vibration in humans. European Journal of Neuroscience, 10(5), 1608-1612.

Hamani C; Richter E; Schwalb J & Lozano A (2008). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery, 62 Suppl 2, 863-874.

Harkema S; Gerasimenko Y; Hodes J; Burdick J; Angeli C; Chen Y; Edgerton V (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. The Lancet, 377(9781) 1938-1947.

Harkema S; Hurley S; Patel U; Requejo P; Dobkin B; Edgerton V (1997). Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol, 77(2), 797–811.

Harkema S (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Research Reviews, 57(1), 255–64.

Hassan S; Amer S; Alwaki A & Elborno A (2013). A patient with Parkinson’s disease benefits from spinal cord stimulation. J Clin Neurosci, 20(8), 1155–1156.

Hayek S; Veizi E & Hanes M (2015). Treatment-limiting complications of percutaneous spinal cord stimulator implants: A review of eight years of experience from an academic center database. Neuromodulation, 18(7), 603–608.

Holsheimer J (2002). Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation, 5(1), 25–31.

Hubli M; Dietz V; Schrafl-Altermatt M & Bolliger M (2013). Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clinical Neurophysiology, 124(6) 1187-1195.

Ichiyama R; Courtine G; Gerasimenko Y; Yang G; van den Brand R; Lavrov I; Edgerton V (2008). Step training reinforces specific spinal locomotor circuitry in adult spinal rats. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(29) 7370-7375.

Ichiyama R; GerasimenkoY; Zhong H; Roy R & Edgerton V (2005). Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neuroscience Letters, 383(3), 339-344.

Illis L (2012). Central nervous system regeneration does not occur. Spinal Cord, 50(4), 259-263.

Jackson A & Zimmermann J (2012). Neural interfaces for the brain and spinal cord-restoring motor function. Nature Reviews Neurology, 8(12), 690-699.

Jilge B; Minassian K; Rattay F; Pinter M; Gerstenbrand F; Binder H & Dimitrijevic M (2004). Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Experimental Brain Research, 154(3), 308–326.

Kakulas B & Kaelan, C (2015). The neuropathological foundations for the restorative neurology of spinal cord injury. Clinical Neurology and Neurosurgery, 129 (S1) S1-S7.

Kalia L & Lang, A (2015). Parkinson’s disease. Lancet, 386(9996), 896–912.

Kiehn, O. (2006). Locomotor Circuits in the Mammalian Spinal Cord. Annual Review of Neuroscience, 29, 279-306.

Kiehn O (2016). Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 17(4), 224-238.

Knikou M (2013). Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Experimental Brain Research, 228(3) 279-296.

Kubasak M; Jindrich D; Zhong H; Takeoka A; McFarland, K; Muñoz-Quiles C & Phelps P (2008). OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain, 131(1), 264–276.

Kumar K; Taylor R; Jacques L; Eldabe S; Meglio M; Molet J & North R (2007). Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain, 132(1–2), 179–188.

Lanciego J; Luquin N & Obeso J (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor Perspectives in Medicine, 2(12).

Landi A; Trezza A; Pirillo D; Vimercati A; Antonini A & Sganzerla E (2013). Spinal cord stimulation for the treatment of sensory symptoms in advanced Parkinson’s disease. Neuromodulation, 16(3), 276-279.

Landi A; Trezza A; Pirillo D; Vimercati A; Antonini A & Sganzerla E (2013). Spinal Cord Stimulation for the Treatment of Sensory Symptoms in Advanced Parkinson’s Disease. Neuromodulation: Technology at the Neural Interface, 16(3), 276–279.

Lavrov I; Dy C. J; Fong A; Gerasimenko Y; Courtine G; Zhong, H & Edgerton V (2008). Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(23), 6022-9.

Lees A; Hardy J & Revesz T (2009). Seminar Parkinson ’ s disease, 373, 2055–2066.

Lemon R (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31(Cm), 195–218.

Levy R; Ashby P; Hutchison W; Lang A; Lozano A & Dostrovsky J (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain : A Journal of Neurology, 125(Pt 6), 1196–1209.

Lewitt P (2008). Levodopa for the treatment of Parkinson’s disease. N Engl J Med, 359(23), 2468-2476.

Linderoth Ph.D; Bengt, M. D; Meyerson Ph.D; Björn A (2010). Spinal Cord StimulationExploration of the Physiological Basis of a Widely Used Therapy. Anesthesiology, 113(6), 1265–1267. Retrieved from

Meireles J & Massano J (2012). Cognitive impairment and dementia in Parkinson’s disease: Clinical features, diagnosis, and management. Frontiers in Neurology, MAY.

Minassian K & Hofstoetter U (2016). Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neuroscience and Therapeutics.

Minassian K; Hofstoetter U; Tansey K & Mayr W (2012). Neuromodulation of lower limb motor control in restorative neurology. Clinical Neurology and Neurosurgery, 114(5) 489-497.

Minassian K; Jilge B; Rattay F; Pinter M; Binder H; Gerstenbrand F & Dimitrijevic M (2004). Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord, 42(7), 401-16.

Minassian K; Persy I; Rattay F; Pinter M; Kern, H & Dimitrijevic M (2007). Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Human Movement Science, 26(2) 275-295.

Mitsuyama T; Goto S; Sasaki T; Taira T & Okada Y (2013). Spinal Cord Stimulation For Chronic Lumbar Pain In Patients With Parkinson’S Disease. In Stereotact Funct Neurosurg (p. 273).

Moraud E; Capogrosso M; Formento E; Wenger N; DiGiovanna J; Courtine G & Micera S (2016). Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron, 89(4), 814-828.

Morgante L; Morgante F; Moro E; Epifanio A; Girlanda P; Ragonese P & Savettieri G (2007). How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Parkinsonism & Related Disorders. 13(8) 528-531.

Mortazavi M; Verma K; Harmon O; Griessenauer C; Adeeb N; Theodore N & Tubbs R (2014). The microanatomy of spinal cord injury: A review. Clinical Anatomy, 0(June), 27-36.

Nishioka K & Nakajima, M (2015). Beneficial Therapeutic Effects of Spinal Cord Stimulation in Advanced Cases of Parkinson’s Disease With Intractable Chronic Pain: A Case Series. Neuromodulation, 18(8) 751-753.

Okun M (2012). Deep-brain stimulation for Parkinson’s disease. N Engl J Med, 367(16), 1529-1538.

Olanow C; Agid Y; Mizuno Y; Albanese A; Bonuccelli U; Damier P& Stocchi F (2004). Levodopa in the treatment of Parkinson’s disease: current controversies. Movement Disorders : Official Journal of the Movement Disorder Society, 19(9), 997–1005.

Petraglia F; Farber S; Gramer R; Verla T; Wang F; Thomas S & Lad S (2016). The incidence of spinal cord injury in implantation of percutaneous and paddle electrodes for spinal cord stimulation. Neuromodulation, 19(1), 85-89.

Pinto de Souza, C; Hamani C; Oliveira Souza, C; Lopez Contreras W; Dos Santos Ghilardi M; Cury R &Talamoni Fonoff E (2016). Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord.

Polymeropoulos M; Lavedan C; Leroy E; Ide S; Dehejia A; Dutra, A & Nussbaum R (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276(5321), 2045-2047. Retrieved from

Rossignol S; Dubuc R; Gossard J & Dubuc J (2006). Dynamic Sensorimotor Interactions in Locomotion. Physiological Reviews. 86 89-154.

Santana, M; Halje P; Simplicio H; Richter U; Freire M; Petersson, P & Nicolelis M; (2014). Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 84(4) 716-722.

Shealy C; Mortimer J & Reswick J (1965). Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesthesia and Analgesia, 46(4), 489–91.

Shinko A; Agari T; Kameda M; Yasuhara T; Kondo A; Tayra J & Date, I. (2014). Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson’s disease. PLoS One, 9(7), e101468.

Silva N; Sousa N; Reis R & Salgado A (2014). From basics to clinical: A comprehensive review on spinal cord injury. Progress in Neurobiology.

Soltani F & Lalkhen A (2013). Improvement of parkinsonian symptoms with spinal cord stimulation: consequence or coincidence?. Journal of Neurology, Neurosurgery & Psychiatry, 84(11), e2.74-e2.

Spieles-Engemann, A; Steece-Collier K; Behbehani M; Collier, T; Wohlgenant S; Kemp C & Sortwell C (2011). Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J Parkinsons Dis, 1(1), 123-136. Retrieved from

Spillantini M; Schmidt M; Lee, V; Trojanowski J; Jakes R & Goedert M (1997) Alpha-Synuclein in Lewy bodies. Nature, 388(6645), 839-840.

Tansey M & Goldberg M (2010). Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. National Institutes of Health, 37(3), 510-518.

Tator C; Minassian K & Mushahwar V (2012). Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handbook of clinical neurology (Vol. 109).

Thevathasan W; Mazzone P; Jha A; Djamshidian A; Dileone M; Di Lazzaro V & Brown P. (2010). Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology, 74(16), 1325-1327.

Turner J; Loeser J; Deyo R & Sanders S (2004). Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain. 108(1-2) 137-147.

Verrills P; Sinclair C & Barnard A (2016). A review of spinal cord stimulation systems for chronic pain. Journal of Pain Research.

Wenger N; Moraud E; Raspopovic S; Bonizzato M; DiGiovanna J; Musienko P & Courtine G. (2014). Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Science Translational Medicine, 6(255), 1–10.

Williams A; Gill S; Varma T; Jenkinson C; Quinn N; Mitchell R & Group P. S. C. (2010). Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 9(6) 581-591.

Yadav A; Fuentes R; Zhang H; Vinholo T; Wang C; Freire M & Nicolelis M (2014). Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions. Sci Rep, 4, 3839.

Yampolsky C; Hem S & Bendersky D. (2012). Dorsal column stimulator applications. Surgical Neurology International, 3(5), 275.


Copyright (c) 2017 ARS MEDICA Revista de Ciencias Médicas

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

ISSN: 1234-5678 © Dirección de Extensión y Educación Continua, Escuela de Medicina, Pontificia Universidad Católica de Chile.

Journal Supported by Chimera Innova Group