Estimulación de la médula espinal: una nueva estrategia terapéutica para restaurar la función motora

Autores/as

  • Maria Florencia Álamos Grau Pontificia Universidad Católica de Chile
  • Rómulo Fuentes Universidad de Chile

DOI:

https://doi.org/10.11565/arsmed.v42i3.1001

Palabras clave:

Estimulación de la médula espinal, neuromodulación, función motora, enfermedad de Parkinson, lesión de la médula espinal, centros generadores de patrones, actividad neural.

Resumen

La estimulación dela Médula Espinal(EME) es una técnica de neuromodulación que ha mostrado ser efectiva en el manejo de los trastornos motores propios de enfermedades tan devastadoras comola Enfermedadde Parkinson (EP) y las lesiones de la médula espinal. Considerando que ambas patologías cuentan con opciones terapéuticas limitadas,la EMEse podría posicionar como una técnica prometedora. Los mecanismos por los cuales operaría la estimulación difieren en ambos casos, generando cambios en la circuitería espinal local en el caso de las lesiones medulares, y cambios supraespinales, en el caso dela EP. Enesta revisión se busca analizar los efectos dela EMEen ambas enfermedades, tanto en modelos animales como en pacientes, hacer una breve descripción de los mecanismos y aludir a los desafíos futuros propuestos para ambos casos.

Biografía del autor/a

Maria Florencia Álamos Grau, Pontificia Universidad Católica de Chile

MD - PhDc en neurociencias PUC

Lineas de investigacion :

Enferemedades neurodegenerativas

Enfermedad de Parkinson

Neuromodulacion

Electrofisiologia

Rómulo Fuentes, Universidad de Chile

Bioquímico, Doctor en Ciencias Biomédicas, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile

Citas

Agari T & Date I (2012). Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson’s disease. Neurologia Medico-Chirurgica, 52(7), 470-474.

Ahlskog J & Muenter M (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement Disorders, 16(3), 448-458. https://doi.org/10.1002/mds.1090

Arii Y; Sawada Y; Kawamura K; Miyake S; Taichi Y; Izumi Y & Mitsui T(2014). Immediate effect of spinal magnetic stimulation on camptocormia in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 85(11), 1221-1226. https://doi.org/10.1136/jnnp-2014-307651

Beres-Jones, J & Harkema, S (2004). The human spinal cord interprets velocity-dependent afferent input during stepping. Brain, 127(10), 2232-2246. https://doi.org/10.1093/brain/awh252

Brown, J; Deriso D; & Tansey K (2012). From contemporary rehabilitation to restorative neurology. Clinical Neurology and Neurosurgery, 114(5), 471-474. https://doi.org/10.1016/j.clineuro.2012.04.009

Brys I; Bobela W; Schneider B; Aebischer P & Fuentes, R. (2016). Spinal cord stimulation improves forelimb use in an alpha-synuclein animal model of Parkinson’s disease. International Journal of Neuroscience, 7454, 1-9. https://doi.org/10.3109/00207454.2016.1138296

Cameron T (2004). Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 100 254-267.

Capogrosso M; Milekovic T; Borton D; Wagner F; Martin Moraud E; Mignardot J & Courtine G (2016). A brain-spinal interface alleviating gait deficits after spinal cord injury in primates. Nature, In Press(7628), 284-288. https://doi.org/10.1038/nature20118

Capogrosso M; Wenger N; Raspopovic S; Musienko P; Beauparlant J; Bassi Luciani L & Micera, S (2013). A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. Journal of Neuroscience, 33(49), 19326-19340. https://doi.org/10.1523/JNEUROSCI.1688-13.2013

Carlsson A (2002). Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. Journal of Neural Transmission, 109(5-6), 777-787. https://doi.org/10.1007/s007020200064

Courtine G; Gerasimenko Y; van den Brand R; Yew A; Musienko P; Zhong, H & Edgerton V(2009). Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nature Neuroscience, 12(10), 1333-1342. https://doi.org/10.1038/nn.2401

Courtine G; Song B; Roy R; Zhong H; Herrmann J; Ao Y & Sofroniew M (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine, 14(1), 69-74. https://doi.org/10.1038/nm1682

Danner S; Hofstoetter U; Freundl B; Binder H; Mayr W; Rattay F & Minassian K (2015). Human spinal locomotor control is based on flexibly organized burst generators. Brain, 138(3), 577-588. https://doi.org/10.1093/brain/awu372

Deer T; Mekhail N; Provenzano D; Pope J; Krames E; Thomson S; North R (2014). The appropriate use of neurostimulation: Avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation, 17(6), 571-598. https://doi.org/10.1111/ner.12206

Dimitrijevic M. R; Dimitrijevic M; Faganel J & Sherwood A (1984). Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann Neurol, 16(2), 216-221. https://doi.org/10.1002/ana.410160208

Dimitrijevic, M; Gerasimenko Y & Pinter M (1998). Evidence for a spinal central pattern generator in humans. In Annals of the New York Academy of Sciences 860 (360-376). https://doi.org/10.1111/j.1749-6632.1998.tb09062.x

Dimitrijevic M; Kakulas B; McKay W & Vrbová G (2012). Restorative Neurology of Spinal Cord Injury. Restorative Neurology of Spinal Cord Injury. https://doi.org/10.1093/acprof:oso/9780199746507.001.0001

Dimitrijevíc M & Nathan P (1967). Studies of spasticity in man. 2. Analysis of stretch reflexes in spasticity. Brain : A Journal of Neurology 90(2) 333-358. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6028252

EdgertonV; Courtine G; Gerasimenko Y; Lavrov I; Ichiyama R; Fong A; Roy R (2008). Training locomotor networks. Brain Research Reviews. https://doi.org/10.1016/j.brainresrev.2007.09.002

Eldabe S; Buchser E & Duarte R (2015). Complications of Spinal Cord Stimulation and Peripheral Nerve Stimulation Techniques: A Review of the Literature. Pain Medicine, pnv025. https://doi.org/10.1093/pm/pnv025

Faganel J & Dimitrijevic M (1982). Study of propriospinal interneuron system in man. Cutaneous exteroceptive conditioning of stretch reflexes. Journal of the Neurological Sciences, 56(2–3), 155–172. https://doi.org/10.1016/0022-510X(82)90139-3

Fénelon G; Goujon C; Gurruchaga J; Cesaro P; Jarraya B; Palfi S & Lefaucheur J (2012). Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson’s disease. Parkinsonism & Related Disorders, 18(2), 213-4. https://doi.org/10.1016/j.parkreldis.2011.07.015

Follett K; Weaver F; Stern M; Hur K; Harris C; Luo, P & Group C. S. P. S. (2010). Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med, 362(22), 2077-2091. https://doi.org/10.1056/NEJMoa0907083

Friedli L; Rosenzweig E; Barraud Q; Schubert M; Dominici N; Awai, L & Courtine G (2015). Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 7(302), 302ra134. https://doi.org/10.1126/scitranslmed.aac5811

Fuentes R; Petersson P & Nicolelis M (2010). Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: Mechanistic approach. European Journal of Neuroscience, 32(7), 1100–1108. https://doi.org/10.1111/j.1460-9568.2010.07417.x

Fuentes R; Petersson P; Siesser W; Caron M & Nicolelis M (2009). Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science, 323(5921) 1578-1582. https://doi.org/10.1126/science.1164901

Goedert M; Spillantini M; Del Tredici K & Braak H (2012). 100 years of Lewy pathology. Nature Reviews Neurology, 9(1), 13–24. https://doi.org/10.1038/nrneurol.2012.242

Goetz C; Poewe W; Rascol O & Sampaio C (2005). Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord, 20(5), 523-539. https://doi.org/10.1002/mds.20464

Grabli D; Karachi C; Welter M; Lau B; Hirsch E; Vidailhet M & Francois C (2012). Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry, 83(10), 979-985. https://doi.org/10.1136/jnnp-2012-302263

Grillner S (1981). Control of locomotion in bipeds, tetrapods, and fish. Handbook of Physiology, The Nervous System II, 1179-1236. https://doi.org/10.1002/cphy.cp010226

Grillner, S., Hellgren, J., Ménard, A., Saitoh, K., & Wikström, M. A. (2005). Mechanisms for selection of basic motor programs - Roles for the striatum and pallidum. Trends in Neurosciences, 28(7), 364-370. https://doi.org/10.1016/j.tins.2005.05.004

Grillner S (2006). Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion. Neuron. https://doi.org/10.1016/j.neuron.2006.11.008

Gurfinkel V; Levik Y; Kazennikov O & Selionov V (1998). Locomotor-like movements evoked by leg muscle vibration in humans. European Journal of Neuroscience, 10(5), 1608-1612. https://doi.org/http://dx.doi.org/10.1046/j.1460-9568.1998.00179.x

Hamani C; Richter E; Schwalb J & Lozano A (2008). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery, 62 Suppl 2, 863-874. https://doi.org/10.1227/01.neu.0000316288.75736.1c

Harkema S; Gerasimenko Y; Hodes J; Burdick J; Angeli C; Chen Y; Edgerton V (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. The Lancet, 377(9781) 1938-1947. https://doi.org/10.1016/S0140-6736(11)60547-3

Harkema S; Hurley S; Patel U; Requejo P; Dobkin B; Edgerton V (1997). Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol, 77(2), 797–811.

Harkema S (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Research Reviews, 57(1), 255–64. https://doi.org/10.1016/j.brainresrev.2007.07.012

Hassan S; Amer S; Alwaki A & Elborno A (2013). A patient with Parkinson’s disease benefits from spinal cord stimulation. J Clin Neurosci, 20(8), 1155–1156. https://doi.org/10.1016/j.jocn.2012.08.018

Hayek S; Veizi E & Hanes M (2015). Treatment-limiting complications of percutaneous spinal cord stimulator implants: A review of eight years of experience from an academic center database. Neuromodulation, 18(7), 603–608. https://doi.org/10.1111/ner.12312

Holsheimer J (2002). Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation, 5(1), 25–31. https://doi.org/10.1046/j.1525-1403.2002._2005.x

Hubli M; Dietz V; Schrafl-Altermatt M & Bolliger M (2013). Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clinical Neurophysiology, 124(6) 1187-1195. https://doi.org/10.1016/j.clinph.2012.11.021

Ichiyama R; Courtine G; Gerasimenko Y; Yang G; van den Brand R; Lavrov I; Edgerton V (2008). Step training reinforces specific spinal locomotor circuitry in adult spinal rats. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(29) 7370-7375. https://doi.org/10.1523/JNEUROSCI.1881-08.2008

Ichiyama R; GerasimenkoY; Zhong H; Roy R & Edgerton V (2005). Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neuroscience Letters, 383(3), 339-344. https://doi.org/10.1016/j.neulet.2005.04.049

Illis L (2012). Central nervous system regeneration does not occur. Spinal Cord, 50(4), 259-263. https://doi.org/10.1038/sc.2011.132

Jackson A & Zimmermann J (2012). Neural interfaces for the brain and spinal cord-restoring motor function. Nature Reviews Neurology, 8(12), 690-699. https://doi.org/10.1038/nrneurol.2012.219

Jilge B; Minassian K; Rattay F; Pinter M; Gerstenbrand F; Binder H & Dimitrijevic M (2004). Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Experimental Brain Research, 154(3), 308–326. https://doi.org/10.1007/s00221-003-1666-3

Kakulas B & Kaelan, C (2015). The neuropathological foundations for the restorative neurology of spinal cord injury. Clinical Neurology and Neurosurgery, 129 (S1) S1-S7. https://doi.org/10.1016/j.clineuro.2015.01.012

Kalia L & Lang, A (2015). Parkinson’s disease. Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Kiehn, O. (2006). Locomotor Circuits in the Mammalian Spinal Cord. Annual Review of Neuroscience, 29, 279-306. https://doi.org/10.1146/annurev.neuro.29.051605.112910

Kiehn O (2016). Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 17(4), 224-238. https://doi.org/10.1038/nrn.2016.9

Knikou M (2013). Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury. Experimental Brain Research, 228(3) 279-296. https://doi.org/10.1007/s00221-013-3560-y

Kubasak M; Jindrich D; Zhong H; Takeoka A; McFarland, K; Muñoz-Quiles C & Phelps P (2008). OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain, 131(1), 264–276. https://doi.org/10.1093/brain/awm267

Kumar K; Taylor R; Jacques L; Eldabe S; Meglio M; Molet J & North R (2007). Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain, 132(1–2), 179–188. https://doi.org/10.1016/j.pain.2007.07.028

Lanciego J; Luquin N & Obeso J (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor Perspectives in Medicine, 2(12). https://doi.org/10.1101/cshperspect.a009621

Landi A; Trezza A; Pirillo D; Vimercati A; Antonini A & Sganzerla E (2013). Spinal cord stimulation for the treatment of sensory symptoms in advanced Parkinson’s disease. Neuromodulation, 16(3), 276-279. https://doi.org/10.1111/ner.12005

Landi A; Trezza A; Pirillo D; Vimercati A; Antonini A & Sganzerla E (2013). Spinal Cord Stimulation for the Treatment of Sensory Symptoms in Advanced Parkinson’s Disease. Neuromodulation: Technology at the Neural Interface, 16(3), 276–279. https://doi.org/10.1111/ner.12005

Lavrov I; Dy C. J; Fong A; Gerasimenko Y; Courtine G; Zhong, H & Edgerton V (2008). Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(23), 6022-9. https://doi.org/10.1523/JNEUROSCI.0080-08.2008

Lees A; Hardy J & Revesz T (2009). Seminar Parkinson ’ s disease, 373, 2055–2066. https://doi.org/10.1093/hmg/ddm159

Lemon R (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31(Cm), 195–218. https://doi.org/10.1146/annurev.neuro.31.060407.125547

Levy R; Ashby P; Hutchison W; Lang A; Lozano A & Dostrovsky J (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain : A Journal of Neurology, 125(Pt 6), 1196–1209. https://doi.org/10.1093/brain/awf128

Lewitt P (2008). Levodopa for the treatment of Parkinson’s disease. N Engl J Med, 359(23), 2468-2476. https://doi.org/10.1056/NEJMct0800326

Linderoth Ph.D; Bengt, M. D; Meyerson Ph.D; Björn A (2010). Spinal Cord StimulationExploration of the Physiological Basis of a Widely Used Therapy. Anesthesiology, 113(6), 1265–1267. Retrieved from http://dx.doi.org/10.1097/ALN.0b013e3181fcf590

Meireles J & Massano J (2012). Cognitive impairment and dementia in Parkinson’s disease: Clinical features, diagnosis, and management. Frontiers in Neurology, MAY. https://doi.org/10.3389/fneur.2012.00088

Minassian K & Hofstoetter U (2016). Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neuroscience and Therapeutics. https://doi.org/10.1111/cns.12530

Minassian K; Hofstoetter U; Tansey K & Mayr W (2012). Neuromodulation of lower limb motor control in restorative neurology. Clinical Neurology and Neurosurgery, 114(5) 489-497. https://doi.org/10.1016/j.clineuro.2012.03.013

Minassian K; Jilge B; Rattay F; Pinter M; Binder H; Gerstenbrand F & Dimitrijevic M (2004). Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord, 42(7), 401-16. https://doi.org/10.1038/sj.sc.3101615

Minassian K; Persy I; Rattay F; Pinter M; Kern, H & Dimitrijevic M (2007). Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Human Movement Science, 26(2) 275-295. https://doi.org/10.1016/j.humov.2007.01.005

Mitsuyama T; Goto S; Sasaki T; Taira T & Okada Y (2013). Spinal Cord Stimulation For Chronic Lumbar Pain In Patients With Parkinson’S Disease. In Stereotact Funct Neurosurg (p. 273).

Moraud E; Capogrosso M; Formento E; Wenger N; DiGiovanna J; Courtine G & Micera S (2016). Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron, 89(4), 814-828. https://doi.org/10.1016/j.neuron.2016.01.009

Morgante L; Morgante F; Moro E; Epifanio A; Girlanda P; Ragonese P & Savettieri G (2007). How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Parkinsonism & Related Disorders. 13(8) 528-531. https://doi.org/10.1016/j.parkreldis.2006.12.013

Mortazavi M; Verma K; Harmon O; Griessenauer C; Adeeb N; Theodore N & Tubbs R (2014). The microanatomy of spinal cord injury: A review. Clinical Anatomy, 0(June), 27-36. https://doi.org/10.1002/ca.22432

Nishioka K & Nakajima, M (2015). Beneficial Therapeutic Effects of Spinal Cord Stimulation in Advanced Cases of Parkinson’s Disease With Intractable Chronic Pain: A Case Series. Neuromodulation, 18(8) 751-753. https://doi.org/10.1111/ner.12315

Okun M (2012). Deep-brain stimulation for Parkinson’s disease. N Engl J Med, 367(16), 1529-1538. https://doi.org/10.1056/NEJMct1208070

Olanow C; Agid Y; Mizuno Y; Albanese A; Bonuccelli U; Damier P& Stocchi F (2004). Levodopa in the treatment of Parkinson’s disease: current controversies. Movement Disorders : Official Journal of the Movement Disorder Society, 19(9), 997–1005. https://doi.org/10.1002/mds.20243

Petraglia F; Farber S; Gramer R; Verla T; Wang F; Thomas S & Lad S (2016). The incidence of spinal cord injury in implantation of percutaneous and paddle electrodes for spinal cord stimulation. Neuromodulation, 19(1), 85-89. https://doi.org/10.1111/ner.12370

Pinto de Souza, C; Hamani C; Oliveira Souza, C; Lopez Contreras W; Dos Santos Ghilardi M; Cury R &Talamoni Fonoff E (2016). Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord. https://doi.org/10.1002/mds.26850

Polymeropoulos M; Lavedan C; Leroy E; Ide S; Dehejia A; Dutra, A & Nussbaum R (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276(5321), 2045-2047. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9197268

Rossignol S; Dubuc R; Gossard J & Dubuc J (2006). Dynamic Sensorimotor Interactions in Locomotion. Physiological Reviews. 86 89-154. https://doi.org/10.1152/physrev.00028.2005.

Santana, M; Halje P; Simplicio H; Richter U; Freire M; Petersson, P & Nicolelis M; (2014). Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 84(4) 716-722. https://doi.org/10.1016/j.neuron.2014.08.061

Shealy C; Mortimer J & Reswick J (1965). Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesthesia and Analgesia, 46(4), 489–91. https://doi.org/10.3109/15360288.2012.678473

Shinko A; Agari T; Kameda M; Yasuhara T; Kondo A; Tayra J & Date, I. (2014). Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson’s disease. PLoS One, 9(7), e101468. https://doi.org/10.1371/journal.pone.0101468

Silva N; Sousa N; Reis R & Salgado A (2014). From basics to clinical: A comprehensive review on spinal cord injury. Progress in Neurobiology. https://doi.org/10.1016/j.pneurobio.2013.11.002

Soltani F & Lalkhen A (2013). Improvement of parkinsonian symptoms with spinal cord stimulation: consequence or coincidence?. Journal of Neurology, Neurosurgery & Psychiatry, 84(11), e2.74-e2. https://doi.org/10.1136/jnnp-2013-306573.165

Spieles-Engemann, A; Steece-Collier K; Behbehani M; Collier, T; Wohlgenant S; Kemp C & Sortwell C (2011). Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J Parkinsons Dis, 1(1), 123-136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22328911

Spillantini M; Schmidt M; Lee, V; Trojanowski J; Jakes R & Goedert M (1997) Alpha-Synuclein in Lewy bodies. Nature, 388(6645), 839-840. https://doi.org/10.1038/42166

Tansey M & Goldberg M (2010). Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. National Institutes of Health, 37(3), 510-518. https://doi.org/10.1016/j.nbd.2009.11.004.Neuroinflammation

Tator C; Minassian K & Mushahwar V (2012). Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handbook of clinical neurology (Vol. 109). https://doi.org/10.1016/B978-0-444-52137-8.00018-8

Thevathasan W; Mazzone P; Jha A; Djamshidian A; Dileone M; Di Lazzaro V & Brown P. (2010). Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology, 74(16), 1325-1327. https://doi.org/10.1212/WNL.0b013e3181d9ed58

Turner J; Loeser J; Deyo R & Sanders S (2004). Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain. 108(1-2) 137-147. https://doi.org/10.1016/j.pain.2003.12.016

Verrills P; Sinclair C & Barnard A (2016). A review of spinal cord stimulation systems for chronic pain. Journal of Pain Research. https://doi.org/10.2147/JPR.S108884

Wenger N; Moraud E; Raspopovic S; Bonizzato M; DiGiovanna J; Musienko P & Courtine G. (2014). Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Science Translational Medicine, 6(255), 1–10. https://doi.org/10.1126/scitranslmed.3008325

Williams A; Gill S; Varma T; Jenkinson C; Quinn N; Mitchell R & Group P. S. C. (2010). Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 9(6) 581-591. https://doi.org/10.1016/S1474-4422(10)70093-4

Yadav A; Fuentes R; Zhang H; Vinholo T; Wang C; Freire M & Nicolelis M (2014). Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions. Sci Rep, 4, 3839. https://doi.org/10.1038/srep03839

Yampolsky C; Hem S & Bendersky D. (2012). Dorsal column stimulator applications. Surgical Neurology International, 3(5), 275. https://doi.org/10.4103/2152-7806.103019

Descargas

Publicado

2017-11-08

Cómo citar

Álamos Grau, M. F., & Fuentes, R. (2017). Estimulación de la médula espinal: una nueva estrategia terapéutica para restaurar la función motora. ARS MEDICA Revista De Ciencias Médicas, 42(3), 31–39. https://doi.org/10.11565/arsmed.v42i3.1001

Número

Sección

Revisión narrativa

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.